内置式双向气泵自调控气流蠕动柔性机器人的制作方法

文档序号:19250730发布日期:2019-11-27 20:11阅读:523来源:国知局
导航: X技术> 最新专利> 五金工具产品及配附件制造技术
内置式双向气泵自调控气流蠕动柔性机器人的制作方法

本发明涉及机器人技术领域,具体而言,涉及一种内置式双向气泵自调控气流蠕动柔性机器人。



背景技术:

管道机器人是一种可沿管道内壁行走的机械,它可以携带各种检测仪器或者作业装置,在操作人员的遥控或者自主控制下进入管道内部,完成管道缺陷探伤、管内加工等任务。现有技术中公开的相关技术,如申请号200810106352.x公开了一种柔性蠕动的管道机器人,这种管道机器人对变径管道的适应性较小。

为了解决变径管道适应性问题,本申请的发明人研究了一种气泵外置的气囊式蠕动机器人,该机器人通过外置的气泵向气囊给气膨胀后自适应地贴合变径管道从而提高对变径管道的适应性。但是进一步研究发现,利用外置气泵向气囊给气的机器人存在缺陷:由于外置气泵和气囊式蠕动机器人之间通过气管连接,机器人的活动范围受到气管的限制,而过长的气管影响了机器人运动的灵活性。



技术实现要素:

本发明提供了一种内置式双向气泵自调控气流蠕动柔性机器人,以解决相关技术中气囊式蠕动机器人运动的灵活性低的问题。

本发明实施例提供了一种内置式双向气泵自调控气流蠕动柔性机器人,包括:头端气囊、伸缩气囊、尾端气囊、电源模块、控制模块和双向气泵,其中,

所述电源模块用于为所述双向气泵和所述控制模块供电;

所述头端气囊、所述伸缩气囊和所述尾端气囊沿轴向依次连接;

所述控制模块用于控制所述双向气泵向所述头端气囊给气或排气,所述头端气囊通过所述双向气泵的给气或排气而沿径向膨胀或收缩;所述控制模块用于控制所述双向气泵向所述尾端气囊给气或排气,所述尾端气囊通过所述双向气泵的给气或排气而沿径向膨胀或收缩;所述控制模块用于控制所述双向气泵向所述伸缩气囊给气或排气,所述伸缩气囊通过所述双向气泵的给气或排气而沿轴向伸长或缩短。

可选地,所述机器人无需外接气源,所述双向气泵的给气和排气均在所述机器人内部流动;或者所述双向气泵与外部环境连接,以实现所述机器人内部的气囊与外部环境之间的气体交换。

可选地,所述机器人还包括附加气囊,所述附加气囊用于存储气体。

可选地,所述机器人还包括安装平台,所述安装平台设置在所述头端气囊和所述伸缩气囊的连接处,或者设置在所述尾端气囊和所述伸缩气囊的连接处,或者在所述头端气囊和所述伸缩气囊的连接处合和所述尾端气囊和所述伸缩气囊的连接处各设置一个安装平台。

可选地,所述双向气泵、电源模块和控制模块设置在所述安装平台上。

可选地,所述安装平台为两个相互配合且密封连接的法兰盘,其中一个法兰盘与伸缩气囊连接,另一个法兰盘与头端气囊和/或尾端气囊连接。

可选地,所述双向气泵的数量为一个;所述机器人还包括:通道、电控开关,其中,所述头端气囊、所述尾端气囊和所述伸缩气囊分别通过一个独立的通道与所述一个双向气泵的一个气管连接,在每个独立的通道上都设置有电控开关;所述一个双向气泵的另一个气管与附加气囊或者外部环境连接。

可选地,所述双向气泵包括:头端气囊双向气泵、尾端气囊双向气泵和伸缩气囊双向气泵,其中,

所述头端气囊双向气泵的两个气管分别与所述附加气囊和所述头端气囊连接;所述尾端气囊双向气泵的两个气管分别与所述附加气囊和所述尾端气囊连接;所述伸缩气囊双向气泵的两个气管分别与所述附加气囊和所述伸缩气囊连接;或者

所述头端气囊双向气泵的两个气管分别与外部环境和所述头端气囊连接;所述尾端气囊双向气泵的两个气管分别与外部环境和所述尾端气囊连接;所述伸缩气囊双向气泵的两个气管分别与外部环境和所述伸缩气囊连接。

可选地,所述附加气囊设置在所述头端气囊和所述尾端气囊之间,且所述附加气囊围绕所述伸缩气囊均匀分布;或者所述附加气囊挂载在所述尾端气囊的尾部。

可选地,所述机器人还包括压力传感器,所述压力传感器设置在所述头端气囊和所述尾端气囊的外侧侧壁上,用于检测该外侧侧壁与管道内壁的压力值。

通过本发明实施例提供的内置式双向气泵自调控气流蠕动柔性机器人,在将气泵内置到机器人内部后,不再需要外部气管和外置气泵给气或者排气,解决了气囊式蠕动机器人运动的灵活性低的问题,提高了机器人的灵活性。

附图说明

此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1是根据本发明实施例的内置式双向气泵自调控气流蠕动柔性机器人的总体结构图;

图2是根据本发明优选实施例的内置式双向气泵自调控气流蠕动柔性机器人的结构图一;

图3是根据本发明优选实施例的内置式双向气泵自调控气流蠕动柔性机器人的结构图二

图4是根据本发明优选实施例的内置式双向气泵自调控气流蠕动柔性机器人的结构图三;

图5是根据本发明优选实施例的内置式双向气泵自调控气流蠕动柔性机器人的结构图四;

图6是根据本发明实施例的气流蠕动柔性机器人结构分类示意图。

具体实施方式

下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

在本实施例中提供了一种内置式双向气泵自调控气流蠕动柔性机器人,图1是根据本发明实施例的内置式双向气泵自调控气流蠕动柔性机器人的总体结构图,如图1所示,该内置式双向气泵自调控气流蠕动柔性机器人包括:头端气囊7、伸缩气囊9、尾端气囊1、电源模块12、控制模块11和双向气泵3、8、10,其中,电源模块12用于为双向气泵3、8、10和控制模块11供电;头端气囊7、伸缩气囊9和尾端气囊1沿轴向依次连接;控制模块11用于控制双向气泵8向头端气囊7给气或排气,头端气囊7通过双向气泵8的给气或排气而沿径向膨胀或收缩;控制模块11用于控制双向气泵10向尾端气囊1给气或排气,尾端气囊1通过双向气泵10的给气或排气而沿径向膨胀或收缩;控制模块11用于控制双向气泵3向伸缩气囊9给气或排气,伸缩气囊9通过双向气泵3的给气或排气而沿轴向伸长或缩短。

上述的头端气囊和尾端气囊为弹性柔性可变性体,并采取冗余设计,即充气膨胀后可以主动适应不同管径和形状的管道。

通过上述的结构,头端气囊、尾端气囊和伸缩气囊在双向气泵的作用下按照一定的顺序给气和排气,实现了机器人在管道内的灵活蠕动。由于上述结构中将双向气泵内置于机器人内部,因此不再需要外部气管和外置气泵给气或者排气,解决了气囊式蠕动机器人运动的灵活性低的问题,提高了机器人的灵活性。

图2是根据本发明优选实施例的内置式双向气泵自调控气流蠕动柔性机器人的结构图,在图2中分别示出了尾端气囊与外部通气孔15、头端气囊与外部通气孔16以及伸缩气囊与外部通气孔17。在一个具体的实施例中,上述的机器人的双向气泵直接从机器人的外部环境采气或者将气体直接排出到外部环境中。即尾端气囊、头端气囊、伸缩气囊内的气体通过通气孔15、16、17直接与外部气体进行交换,内部没有形成气体循环。这种直接与外部气体进行交换的机器人能够适应大多数的管道应用。

但是,当将机器人应用到更为恶劣的环境(例如存在气液混合或者具有腐蚀性气体的管道,或者各种腔肠中)中时,如果直接从机器人的外部环境采气,则可能导致腐蚀性气体或者液体进入气囊内部,最终可能导致机器人丧失行动能力而报废。为了解决这个问题,在本发明实施例中采用机器人无需外接气源,双向气泵的给气和排气均在机器人内部流动的方式。参考图3,可选地,机器人还包括附加气囊4,附加气囊4用于存储气体。

可选地,双向气泵包括:头端气囊双向气泵、尾端气囊双向气泵和伸缩气囊双向气泵,其中,头端气囊双向气泵的两个气管分别与附加气囊和头端气囊连接;尾端气囊双向气泵的两个气管分别与附加气囊和尾端气囊连接;伸缩气囊双向气泵的两个气管分别与附加气囊和伸缩气囊连接。通过这样的方式,整个机器人为封闭空间,除附加气囊外,每个气囊均有一个独立气泵与附加气囊相通,各个气泵完成各个气囊与附加气囊间的气体交换。

附加气囊设置的位置可以灵活设置,只要不影响机器人的蠕动前进即可。可选地,附加气囊设置在头端气囊和尾端气囊之间,且附加气囊围绕伸缩气囊均匀分布。附加气囊可以随着伸缩气囊伸缩时发生径向和轴向变形。这样设置附加气囊的好处在于附加气囊吸气膨胀后能够尽可能不与管道内壁接触,避免干涉机器人的蠕动前进。

可选地,附加气囊还可以挂载在尾端气囊的尾部,只要保证附加气囊吸气膨胀后不与管道内壁产生较大的压力即不会干涉机器人的蠕动前进。

可选地,机器人还包括安装平台18,安装平台18设置在头端气囊和伸缩气囊的连接处,或者设置在尾端气囊和伸缩气囊的连接处,或者在头端气囊和伸缩气囊的连接处和尾端气囊和伸缩气囊的连接处各设置一个安装平台。

可选地,双向气泵、电源模块和控制模块都设置在安装平台上。安装平台优选采用具有一定强度且密度低的材料制成,例如塑料或者铝合金。

为了方便头端气囊、伸缩气囊和尾端气囊的拆卸,可选地,安装平台18为两个相互配合且密封连接的法兰盘,其中一个法兰盘18-1与伸缩气囊连接,另一个法兰盘18-2与头端气囊和/或尾端气囊连接。法兰盘18-1和法兰盘18-2优选采用螺纹或者锁扣连接。

可选地,机器人还包括压力传感器6、13,压力传感器6、13设置在头端气囊和尾端气囊的外侧侧壁上,用于检测该外侧侧壁与管道内壁的压力值。控制模块根据该压力值控制各个双向气泵的工作状态。

下面介绍图3所示的内置式双向气泵自调控气流蠕动柔性机器人的工作过程。

尾端气囊通过尾端气囊气门2预先充气,使用过程中也可以通过尾端气囊气门给尾端气囊补气;附加气囊通过附加气囊气门5预先充气和使用过程中补气;伸缩气囊通过伸缩气囊气泵从附加气囊中补气;头端气囊通过头端气囊气门6-1预先充气和使用过程中补气。工作时,各个气囊通过各自的气泵和附加气囊交换气体,从而使该机器人形成内部气体循环,不需要连接外部气管。气囊泵是双向泵,既能从附加气囊向各个气囊抽气,也能从各个气囊向附加气囊抽气,并和控制模块和电源模块安装于安装平台上。

该机器人工作过程如下:假设头端、尾端预先充有0.75个单位气体,伸缩气囊预先充有1个单位气体,附加气囊预先充有0.5个单位气体,当头尾端气囊气体达到1个单位时,头尾端气囊与管道内壁充分接触,并且气囊压力传感器反馈值达到设定值。关闭各自气囊气门,是气囊气体不与外部气体发生交换,形成一个独立的定量内循环系统。在实际应用中,各个气囊预先充气量根据实际需求添加。

第一步:头端气囊气泵从附加气囊抽气,向头端气囊充0.25个单位气体,此时头端气囊径向膨胀,支撑在管道内壁,尾端气囊压力传感器压力值也达到设定值;

第二步:伸缩气囊气泵从伸缩气囊抽气,向附加气囊充0.8个单位气体,此时伸缩气囊轴向收缩,带动尾端气囊沿轴向方向移动,同时附加气囊轴向被挤压,向径向方向膨胀,但不会与管壁发生接触;

第三步:尾端气囊气泵从附加气囊抽0.25个单位气体,并充到尾端气囊中,此时尾端气囊径向膨胀,支撑在管道内壁,尾端气囊压力传感器压力值也达到设定值;

第四步:头端气囊气泵从头端气囊向附加气囊抽0.25个单位气体,此时头端气囊径向收缩,与管道内壁脱离;

第五步:伸缩气囊气泵从附加气囊向伸缩气囊充0.8个单位气体,使伸缩气囊轴向伸长,同时附加气囊径向收缩轴向伸长,从而伸缩气囊将头端气囊沿轴向方向向前推动;

重复以上步骤,机器人便可自行在管道内蠕动前进。

需要说明的是,上述实施例中气囊的大小及充气单位值都是示例性的,各个气囊大小和充气多少可以根据实际应用需求进行设计;机器人在使用中的气体量也都是根据需求预先充好的,机器人内部形成气体循环,不依赖于外部气体,在有害气体环境中也是安全的。

如果在正常环境中,可以采用开放式蠕动机器人,即没有附加气囊,其工作过程与上述有附加气囊的机器人的工作过程类似,不同之处在于气囊气泵是从外部气体向气囊充气,将气囊气体抽到外部。

如图4所示,在另一个实施例中,双向气泵19的数量为一个;机器人还包括:通道19-2、19-4、19-7、电控开关19-3、19-5、19-6,其中,头端气囊、尾端气囊和伸缩气囊分别通过一个独立的通道与这一个双向气泵19的一个气管连接,在每个独立的通道上都设置有电控开关;这一个双向气泵19的另一个气管与附加气囊连接。

此时,蠕动机器人的工作过程如下:预先在附加气囊充有足够的气体,头端、尾端、伸缩气囊均处于收缩状态,所有微型电磁阀(即电控开关)均处于关闭状态。

第一步,电磁阀19-6打开,气泵将气体从附加气囊充到尾端气囊,尾端气囊径向膨胀,与管道内壁充分接触,支撑在管道内,使尾端气囊外壁压力传感器压力值达到设定值,关闭电磁阀19-6;

第二步,打开电磁阀19-4,气泵将气体从附加气囊充到伸缩气囊,伸缩气囊轴向伸长,从而让机器人头端向前移动,当到达预定伸长值后,关闭电磁阀19-4;

第三步,打开电磁阀19-3,气泵将气体从附加气囊充到头端气囊,头端气囊径向膨胀,与管道内壁充分接触,支撑在管道内,使头端气囊外壁压力传感器压力值达到设定值,关闭电磁阀19-3;

第四步,打开电磁阀19-6,气泵将气体从尾端气囊充到附加气囊,使尾端气囊脱离管道内壁,关闭电磁阀19-6;

第五步,打开电磁阀19-4,气泵将气体从伸缩气囊充到附加气囊,伸缩气囊轴向收缩,从而带动机器人尾端轴向移动,当收缩到预定值后,关闭电磁阀19-4。

重复以上步骤,蠕动柔性机器人就可以在管道内蠕动前进。

类似的,在一个具体的实施例中,上述的机器人的双向气泵直接从机器人的外部环境采气或者将气体直接排出到外部环境中。如图5所示,为无附加气囊的共用气泵式蠕动柔性机器人。双向气泵20安装在尾端气囊底板上;通道20-1穿过尾端气囊与外部气体相通,气门为20-8;通道20-3与头端气囊相通,电磁阀20-2控制通道20-2的通断;通道20-4与伸缩气囊相通,电磁阀20-5控制通道20-4的通断;通道20-6与尾端气囊相通,电磁阀20-7控制通道20-6的通断。

该机器人运动过程与具有附加气囊的共用气泵式机器人运动过程类似,不同之处是,该机器人气泵不是从附加气囊通气,而是与外界气体通气。

图6是本发明实施例的气流蠕动柔性机器人结构分类示意图。如图6所示,本发明实施例提供的内置式双向气泵自调控气流蠕动柔性机器人按气流循环方式可以分成开放式和封闭式蠕动柔性机器人:

①开放式蠕动柔性机器人无附加气囊,头端、尾端、伸缩气囊通过双向气泵与外界环境交换气体,形成气流外循环,主要应用与外界环境气体充足且为无害气体情况下;

②封闭式蠕动柔性机器人具有附加气囊,各个气囊预先根据需求充一定量气体,使用过程中头端、尾端、伸缩气囊通过双向气泵与附加气囊交换气体,与外界没有气体交换,形成气流内循环,主要应用与外界环境为有害气体或气体较少情况下。

内置式双向气泵自调控气流蠕动柔性机器人按双向气泵数量可以分成单气泵(双向)式和多气泵(双向)式蠕动柔性机器人:

①单气泵(双向)式蠕动柔性机器人的双向气泵与多个电控开关(例如微型电磁阀)协同工作,顺序控制各个电磁阀的通断,控制各个气囊与外界环境或附加气囊交换气体,从而控制各个气囊的缩放,让机器人蠕动;

②多气泵(双向)式蠕动柔性机器人的头端、伸缩、尾端气囊均具有独立的双向气泵,控制系统顺序控制各自气囊气泵的通断和方向,控制各个气囊与外界环境或附加气囊交换气体,从而控制各个气囊的缩放,让机器人蠕动。

因此,本发明实施例提供的内置式双向气泵自调控气流蠕动柔性机器人可以有以下几种结构形式,实际使用时根据需求选择合适的结构:开放式单气泵(双向)蠕动柔性机器人、开放式多气泵(双向)蠕动柔性机器人、封闭式单气泵(双向)蠕动柔性机器人、封闭式多气泵(双向)蠕动柔性机器人。

本发明的蠕动柔性机器人除了本实例中通过气体作为动力外,还可以使用介磁、电、热、声、光、化学、生物等材料作为动力源来实现。蠕动柔性机器人在实际应用中可以作为搬运工作,运载平台,可以根据实际需求将目标物体运送到目标位置,可以搭载光纤进行激光手术等。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

完整全部详细技术资料下载
当前第1页 1  2 
相关技术
  • 操作设备、控制系统、控制方法...
  • 操作设备、控制系统、控制方法...
  • 一种压铸用机器人的制作方法
  • 一种高速公路巡检机器人的制作...
  • 一种用于零件加工的自动上下料...
  • 一种探测机器人、异常行为分析...
  • 一种具有回形顶升平台的搬运设...
  • 一种夹取臂及夹取方法与流程
  • 一种移动式机器人的制作方法
  • 一种移动作业机器人的三维激光...
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1
什么是柔性机器人相关技术
  • 一种柔性撒料的智能上甑机器人工作方法
  • 一种基于柔性撒料机器人的全自动装甑系统的制作方法
  • 一种柔性撒料的智能上甑机器人的制作方法
  • 移动式柔性建筑结构检测机器人的制作方法
  • 活塞驱动磁流柔性机器人手装置的制造方法
  • 柔性件平夹耦合切换自适应机器人手指装置的制造方法
  • 闭环柔性件导杆平夹自适应机器人手指装置的制造方法
  • 全方位柔性针穿刺机器人的制作方法
  • 一种机器人专用柔性连接装置的制造方法
  • 智能售卖机器人出货柔性控制装置的制造方法
机器人柔性手相关技术
  • 一种夹紧柔性管件的夹爪的制作方法
  • 一种基于机器人的曲轴柔性自动化连线的制作方法
  • 可自由组合的多用途气动柔性手的制作方法
  • 闭环柔性件导杆平夹自适应机器人手指装置的制造方法
  • 高柔性耐扭曲机器人电缆的制作方法
  • 主动锁定流体式柔性杆簇自适应机器人手装置的制造方法
  • 一种机器人手爪的制作方法
  • 四自由度3sprr+sp型混联机器人柔性手的制作方法
  • 一种足球机器人柔性主动带球装置的制造方法
  • 一种核处理用机器人爪具的制作方法

玻璃钢生产厂家做玻璃钢雕塑对人体有害吗玻璃钢跌水景雕塑生产丁太原园林玻璃钢雕塑生产厂家郑州玻璃钢雕塑报价雕塑玻璃钢报价福州玻璃钢雕塑来图定制专业的玻璃钢动物雕塑常州元旦商场美陈苏州玻璃钢雕塑工程玻璃钢园林雕塑合肥抽象玻璃钢雕塑批发出售玻璃钢动漫雕塑厂安丘小动物玻璃钢雕塑产地吉林玻璃钢动物雕塑价格成品玻璃钢花盆定制安丘玻璃钢雕塑园临汾广场玻璃钢雕塑玻璃钢心形雕塑河源会发光的玻璃钢雕塑摆件玻璃钢火烈鸟雕塑定制玻璃钢花盆绘画动漫商场外墙美陈装饰工艺玻璃钢装饰雕塑厂家玻璃钢主题雕塑厂街头创意玻璃钢雕塑山西卡通动漫玻璃钢雕塑生产厂山西玻璃钢浮雕不锈钢公园雕塑玻璃钢商场dp美陈雕塑四川小区玻璃钢雕塑安装龙岩手糊法玻璃钢雕塑价格香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化